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TRAVELING WAVE DYNAMICS IN A TRANSLATING
STRING COUPLED TO STATIONARY

CONSTRAINTS: ENERGY TRANSFER AND MODE
LOCALIZATION
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Energy transfer and mode localization in a translating string, coupled to a stationary
spring-mass-damper system, are analyzed using traveling waves. The string tension and the
non-conservative centrifugal force at the constraint lead to energy transfer between the
translating continuum and the stationary constraint. By calculating energy contained in a
harmonic wave before and after interacting with the constraint, energy transferred at the
constraint is quantified in terms of constraint parameters. At an undamped constraint,
energy is transmitted when a downstream (forward) wave impinges on the constraint. At
a damped constraint, energy dissipated by damping, as well as energy flux by the tension
and centrifugal force, contribute to the energy variation at the coupling point. When the
damping coefficient of the damped constraint equals twice the impedance of the string,
vibration energy is maximally dissipated. Asymmetry caused by the constraint localizes
vibration modes into a downstream or upstream region. The degree of localization in each
vibration mode is described in terms of the reflection coefficient and the constraint location.
The effect of the constraint parameters on the mode localization and veering of natural
frequency loci are also examined.
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1. INTRODUCTION

A class of flexible translating mechanical systems used for transmitting power, material
or information is referred to as axially moving materials. Such systems include belts, chains,
magnetic tapes, paper sheets and threads, composite and textile fibers, pipes transporting
fluids, flexible robotic manipulators with prismatic joints, and flexible appendages on
spacecraft. The extensive research in the axially moving systems is summarized in review
articles by Wickert and Mote [1], Wang and Liu [2] and Paidoussis and Li [3].

The translating string in contact with a stationary constraint is a common model for
a magnetic tape passing across a recording head or a band saw translating over a fixed
guide bearing. The linear free and forced responses of a translating string over an elastic
foundation were studied by eigenvalue analyses [4] and the transfer function method [5].
It was shown that the elastic foundation does not alter the critical speed in the linear model.
Cheng and Perkins [6] examined the linear vibration and stability of a string translating
through an elastically supported, dry friction guide. The transient response of a translating
string with an attached inertia [7] and a traveling damped linear oscillator [8] were studied
using a Green’s function formulation. Zhu and Mote [9] have studied transient response
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of a translating string constrained to a fixed linear oscillator and derived the exact
expression for the constraint force in the constrained translating string. Recently, Chen
[10] also examined the natural frequencies and stability of a traveling string in contact with
a stationary load system.

An analogous problem with a similar governing equation is the vibration of a
constrained rotating circular string. The idealized rotating string is a simplified model of
a computer memory disk, a guided circular saw or a turbine disk. These non-dispersive
models provide some insight to the dynamics of a translating or rotating, flexible medium
when subjected to fixed constraint forces. The free response of a rotating circular string
coupled to various stationary constraints was examined by Schajer [11] for a point elastic
restraint, Xiong and Hutton [12] for the distributed elastic constraint, and Yang and
Hutton [13] for various stationary constraints.

One of the interesting features observed in a translating string is that the free vibration
energy shows a periodic variation [14, 15]. For a non-translating undamped string, the total
energy is constant. However under translation, energy transfers into or out of the moving
continuum at a boundary support. Wickert and Mote [16] showed that energy flux
occurring at a fixed boundary of the traveling string is the product of the string tension
and the convective component of the velocity. Energy transferred between the translating
string and various boundary supports, was quantified using the traveling wave method [17].

Eigenvalues (natural frequencies) are often plotted versus a system parameter creating
a family of frequency loci. The effect of the system parameter on the corresponding
vibration modes has been studied by many researchers for nearly periodic structures
[18, 19] and gyroscopic systems [6, 20]. Relatively small structural irregularities may result
in large changes in dynamic properties of a structure and localize the associated vibration
modes. For a translating string, a stationary constraint attached to the moving continuum
may cause asymmetry of the system and localize vibration modes into a downstream or
upstream region.

First, energy transfer observed in the translating string coupled to a stationary constraint
of a spring-mass-damper system is examined in this paper. Energy transferred at the
constraint is represented in terms of the constraint parameters and impedance of the
translating string. Second, the degree of localization of each vibration mode is derived in
terms of the reflection coefficient and the location of the constraint. Veering of frequency
loci associated with mode localization are also quantified as a function of the magnitude
of disorder and the coupling factor.

2. SYSTEM MODEL

Consider a uniform string translating at constant speed and tension between two
supports separated by a distance L. The string passes through a frictionless, fixed
constraint modelled by stiffness, inertia and viscous damping at X=Xc , as shown in

Figure 1. Schematic of a translating string coupled to a stationary constraint of a spring-mass-damper system.
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Figure 1. Under the assumptions that the transverse motion is small compared to the the
length L and the initial tension in the string is sufficiently large that its vibration during
small amplitude vibration is negligible, the linear equation of transverse motion W(X, T)
of the traveling string becomes

r012W
1T2 +2V

12W
1X 1T

+V2 12W
1X21−P

12W
1X2 =−0M 12W

1T2 +D
1W
1T

+KW1d(X−Xc ), (1)

where 0QXQL, r is the linear density of the string, P is the constant tension, K is the
spring stiffness, D is the linear damping coefficient and M is the mass of the constraint.
Introduction of the dimensionless variables

x=
X
L

, w=
W
L

, t=
T
L 0Pr1

1/2

, v=V0rP1
1/2

,

xc =
Xc

L
, m=

M
rL

, d=
D

(Pr)1/2, k=K
L
P

(2)

into equation (1) yields the normalized equation of motion

wtt +2vwxt −(1− v2)wxx =−(mwtt + dwt + kw)d(x− xc ), 0Q xQ 1, (3)

where each subscript denotes partial differentiation. The inlet and outlet boundaries are
fixed:

w(0, t)=w(1, t)=0. (4)

At x= xc , continuity and force balance conditions require

w(x−
c , t)−w(x+

c , t)=0,

(1− v2){wx (x−
c , t)−wx (x+

c , t)}+ kw(xc , t)+ dwt (xc , t)+mwtt (xc , t)=0. (5)

The critical transport speed for divergence instability, vc =1, is determined from the
time-independent terms in the linear model (3). In this paper, v remains constant and
subcritical. Applying the eigenvalue problem of the form, w(x, t)=W(x) elt, into equation
(3) yields the characteristic equation

(ml2 + dl+ k) sinh
xcl

1− v2 sinh
(1− xc )l

1− v2 + l sinh
l

1− v2 =0. (6)

Roots of equation (6) are generally complex values, l= n+ iv. Here v is real and denotes
the dimensionless natural frequency of the system. At a non-dissipative constraint (d=0),
the eigenvalue becomes purely imaginary (n=0). For a string without the constraint
(m= d= k=0), the solution of equation (6) recovers the natural frequencies of the
classical moving threadline, vn = np(1− v2) where n=1, 2, 3, · · · [21, 22]. For a limiting
case of the spring stiffness, k:a, the upstream and downstream string segments decouple,
and the natural frequencies become vm =mp(1− v2)/xc and vn = np(1− v2)/(1− xc )
where m, n=1, 2, 3, · · · . These are the natural frequencies of the two moving threadlines
of lengths xc and (1− xc ).

3. ENERGY EXPRESSION BY TRAVELING WAVES

In general, the free vibration response of the translating string is described through
modal superposition of normal modes (standing waves). However, the modal approach
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Figure 2. Wave reflection and transmission for downstream incident waves in a translating continuum–station-
ary constraint system.

becomes inefficient to analyze energy transfer between the moving continuum and the
constraint. In this study, traveling waves rather than standing waves are used to describe
the energy transfer.

3.1.   

A wave propagating along one-dimensional continua has the form

w(x, t)=A ei(vt− gx), (7)

where v and g are frequency and wavenumber of the wave. The dimensionless frequency
is related to the dimensional frequency V by v=VLz(r/P). For an infinite translating
string, the transverse harmonic motion is represented by two independent traveling waves:

w(x, t)=Ad ei(vt− gdx) +Au ei(vt+ gux). (8)

Here gd and gu are wavenumbers of downstream (forward) and upstream (backward)
traveling waves. The dispersion relation obtained from equations (3) and (7),

(1− v2)g2 +2vgk−v2 =0, (9)

leads to the wavenumbers of downstream and upstream waves:

gd =
v

1+ v
, gu =

v

1− v
. (10)

The phase velocities of the waves are, respectively, cd =1+ v and cu =1− v. When an
incident wave of amplitude Ai , traveling downstream, meets the constraint, waves reflected
from and passing through the constraint are described by Ar ei(vt+ gux) and At ei(vt− gdx), as
shown in Figure 2. The subscripts i, r and t identify the incident, reflected and transmitted
waves. Wave scattering at the discontinuity is usually characterized by the reflection and
transmission coefficients, r=Ar /Ai and t=At /Ai . When the discontinuity has no external
energy source or sink, energy conservation requires [23]

rr*+ tt*=1, r*t+ rt*=0, (11)

and the coefficients take the forms

r= =r= eifr, t= =t= ei(fr + p/2), (12)

where the asterisk denotes complex conjugation.

3.2.   

For a non-translating string coupled to an undamped constraint (d=0), free vibration
energy is always constant. If the string translates, then energy flux between the moving
continuum and the constraint occurs and the vibrating energy varies with time. The
constraint forces, causing the energy variation, can be identified by considering traveling
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waves. For a downstream traveling wave, w(x, t)=Ad ei(vt− gdx), the transverse forces
applying on a constraint at x=0 are

Fm =−mwtt (0, t)=mv2Ad eivt, Fc =−dwt (0, t)=−idvAd eivt, (13, 14)

Fk =−kw(0, t)=−kAd eivt, Fn =−(1− v2)wx (0, t)= i(1− v2)gdAd eivt. (15, 16)

Here Fn is the transverse component of the string tension plus the centrifugal force.
The centrifugal force is produced by the continuum passing through the constraint. In
the string model, there is no continuity for the slope at the constraint point unlike a
beam model. Thus, the slope in equation (16) is the average one at the point:
wx (0, t)= {wx (0+, t)+wx (0−, t)}/2. Since an element of the translating continuum
located at position x changes with time, the instantaneous transverse velocity of the
particle is wt + vwx in inertial co-ordinates. For the downstream wave, the
instantaneous velocity at the constraint becomes

vp (t)=wt (0, t)+ vwx (0, t)= i(v− vgd )Ad eivt =
v

1+ v
iAd eivt. (17)

Since Fm and Fk are out of phase by p/2 with the transverse velocity vp , neither a
spring nor mass component causes energy flux at the constraint over a cycle. However,
the damping force Fc is always out of phase by p with vp and results in energy dissipation
at the constraint. Equations (16) and (17) show that the tension and centrifugal force Fn ,
is in phase with the material velocity vp at the subcritical speed range. Energy is then
transmitted into the system when the forward wave impinges on the constraint (Figure
3(a)). In this case, translation energy of the moving string, produced from the driving
system, is added to the vibrating energy. Therefore, even if the constraint is fixed, the force
Fn leads to energy transfer because the material transverse velocity at the constraint,
vp (t)= vwx (0, t), is not always zero [17]. For a backward traveling wave,
w(x, t)=Au ei(vt+ gux), the transverse force

Fn =−i(1− v2)guAu eivt (18)

is out of phase by p with the transverse velocity

vp (t)=wt (0, t)+ vwx (0, t)= i(v+ vgu )Au eivt. (19)

The energy transfer mechanism is contrary to the case of the forward wave. Energy is
always dissipated when the upstream wave interacts with the constraint (Figure 3(b)).

Figure 3. The effect of the force Fn on energy flux at the constraint: (a) forward incident wave, (b) backward
wave.
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3.3.  

In a non-translating string, rr* and tt* are generally used to describe energy ratios of
the reflected and transmitted waves to the incident wave. However, the coefficients are
inappropriate to describe energy ratios in the translating continuum, because translation
leads to different impedances (wavenumbers) between downstream and upstream waves.
In this section, energy coefficients are defined to quantify the energy transfer produced at
the constraint of the translating string. The total energy per unit length of the translating
string is the sum of the kinetic and potential energy densities:

E
 = 1
2r(wt + vwx )2 + 1

2Pw2
x . (20)

The energy contained in one wavelength of a traveling wave A ei(vt− gx) is

El =g
x+ l

x

E
 dx = pvZAA*, (21)

where Z=P/c is the mechanical impedance of the string. When a wave with impedance
Zi is incident on the constraint, part of the wave will be reflected into a region with
different impedance Zr , and the remaining wave transmits through the constraint into a
region with the same impedance (Zt =Zi ). Energy, transferred into the wave at the
constraint over a cycle becomes

DE=Er +Et −Ei = pv(ZrArA*r +ZtAtA*t −ZiAiA*i ). (22)

The energy reflection coefficient R is then defined as the fraction of the incident wave
energy that is reflected [17]:

R=
Er

Ei
=

ZrArA*r
ZiAiA*i

=
gr

gi
rr*. (23)

The energy transmission coefficient T is also defined as

T=
Et

Ei
=

ZtAtA*t
ZiAiA*i

= tt*. (24)

The total energy coefficient,

E=
Er +Et

Ei
=

gr

gi
rr*+ tt*, (25)

gives the energy ratio of the transmitted plus reflected waves relative to the incident wave.

3.3.1. Undamped constraint
For the case of d=0, only Fn causes energy transfer at the constraint. From the energy

coefficient (25), work done by the force is calculated and its ratio to the incident wave
energy is determined by the energy flux coefficient

F=
DE
Ei

=
Zr −Zi

Zi 0Ar

Ai10Ar

Ai1*=
gr − gi

gi
rr*. (26)

As predicted in section 3.2, the coefficient becomes positive and negative for the forward
and backward incident waves,

Ff =
2v

1− v
rr*e 0, Fb =−

2v
1+ v

rr*E 0, (27)
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respectively. Note that the energy transfer is proportional to the wave reflected from the
constraint. Using the flux coefficient, the total energy coefficient (25) is rewritten as
E=1+F.

3.3.2. Damped constraint
For the case of d$ 0, an additional energy transfer done by the force Fc in equation

(14) must be considered. The absorption coefficient, defined as

a=1− rr*− tt*, (28)

determines energy dissipated by damping relative to the incident wave energy. The
coefficient satisfies 0E aE 1. Without damping, a=0. In this case, the energy flux
coefficient becomes

F=
DE
Ei

− a=
gr − gi

gi
rr*, (29)

and it is identical to the undamped case (26). The total energy coefficient (25) is also
represented by E=1− a+F.

4. ENERGY TRANSFER AT THE CONSTRAINT

The energy coefficients, derived in the previous section, require the values of r and t to
calculate energy transferred at the constraint. The values are determined from the
boundary conditions of the constraint. When a downstream traveling wave is incident on
the constraint, the wave response is represented by

w(x, t)=6Ai ei(vt− gdx) +Ar ei(vt+ gux)

At ei(vt− gdx)

: xE 0−

: xe 0+
. (30)

Substitution of equation (30) into the geometric and force balances at the constraint,

w(0−, t)=w(0+, t),

(1− v2){wx (0−, t)−wx (0+, t)}+mwtt (0, t)+ dwt (0, t)+ kw(0, t)=0, (31)

gives the complex reflection and transmission coefficients in terms of the constraint
parameters such as

r=
Ar

Ai
=−

(k−mv2)+ idv

(k−mv2)+ i(d+2)v
, t=

At

Ai
=

i2v

(k−mv2)+ i(d+2)v
. (32)

These ratios are independent of speed v and wavenumbers gd and gu , because an observer
moving with the string measures the same amplitude and phase as a fixed observer.
Therefore, the reflection and transmission coefficients for an upstream wave or a
non-translating string are equal to those in equation (32).

4.1.  

For the constraint of a spring only (m= d=0), the reflection and transmission
coefficients at the constraint are, from equation (32),

r=−
k

k+ i2v
, t=

i2v

k+ i2v
. (33)
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The elastic constraint is transparent to high frequency. The corresponding energy reflection
coefficients for forward and backward incident waves are

Rf =01+ v
1− v1 k2

k2 +4v2, Rb =01− v
1+ v1 k2

k2 +4v2. (34)

For the forward wave, energy is transferred into the system and its magnitude relative to
the incident energy is represented in terms of system parameters using equation (26):

Ff =
2v

1− v 0 k2

k2 +4v21. (35)

For the backward wave, the wave energy decreases at the constraint because of
Fb =−Ff Q 0. For k:a, the waves are completely reflected with a phase change of p

(r=−1 and t=0). In the limiting case, the energy coefficient for the forward wave
becomes maximum, Ef =(1+ v)/(1− v). For the backward wave, it is minimum,
Eb =(1− v)/(1+ v).

4.2.  

When the constraint is modelled by a point mass (k= d=0), the reflection and
transmission coefficients are

r=
mv

−mv+ i2
, t=

i2
−mv+ i2

. (36)

Wave propagation by the point mass is complementary to the elastic constraint. The
constraint reflects harmonic waves of high frequency and transmits low frequency ones.
For forward and backward incident waves, the resultant energy flux ratios, Ff and Fb ,
are shown in Table 1. The energy reflection and transmission coefficients are plotted in
Figures 4(a) and (b) when the constraint has a spring of k=10 or a point mass of m=0·1.
Here translation speed is v=0·5. High frequency waves transmit through the elastic
constraint and Rf and Rb increase with frequency. The frequency, at which one half of the
incident wave at the spring constraint is transmitted (T=0·5), is v= k/2. For the point
mass, the frequency of T=0·5 is v=2/m. The total energy coefficients under the
constraint of the spring or point mass are shown in Figures 4(c) and (d). The total energy
coefficients satisfy 1EEf E 3 and 0·5EEb E 1.

T 1

Energy bounds and energy flux coefficients of the translating string

Constraint Forward incident wave Backward incident wave

Spring 1EEf E 1+ v
1− v Ff =

2vk2

(1− v)(k2 +4v2)
1− v
1+ vEEb E 1 Fb =− 2vk2

(1+ v)(k2 +4v2)

Mass 1EEf E 1+ v
1− v Ff =

2vm2v2

(1− v)(m2v2 +4)
1− v
1+ vEEb E 1 Fb =− 2vm2v2

(1+ v)(m2v2 +4)

Damper 1+ v
2 EEf E 1+ v

1− v Ff =
2vd2

(1− v)(d+2)2
1− v

2 EEb E 1 Fb =− 2vd2

(1+ v)(d+2)2
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Figure 4. The effect of frequency v on energy coefficients at a spring and a mass constraint when v=0·5:
the reflection and transmission coefficient: (a) m=0, k=10, (b) m=0·1, k=0; the total energy coefficient:
(c) m=0, k=10, (d) m=0·1, k=0.

4.3. - 

Consider the case that the constraint is a spring-mass oscillator (d=0). At the
constraint,

r=−
k−mv2

(k−mv2)+ i2v
, t=

i2v

(k−mv2)+ i2v
. (37)

The energy flux coefficients and the bounds of the coefficient E are similarly represented
in terms of the constraint parameters. The energy coefficients of the spring-mass constraint
with k=10 and m=0·1 are shown in Figures 5(a)–(c). At small v, the incident wave
largely reflects from the constraint. When the frequency equals the natural frequency of
the oscillator (v=zk/m=10), the incident wave transmits through the oscillator without
reflection (r=0, t=1). At the frequency, the total wave energy remains the same and the
energy flux coefficient vanishes. As v increases further, the reflected wave increases again.

4.4.  

4.4.1. Energy transfer
For a viscously damped constraint (k=m=0), the reflection and transmission

coefficients at the coupled point become

r=−
d

d+2
, t=

2
d+2

. (38)
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The coefficients are real and independent of frequency. It is also satisfied that r2 + t2 Q 1.
When a forward harmonic wave interacts with the constraint, the associated energy
coefficients,

Rf =
1+ v
1− v 0 d

d+21
2

, T=0 2
d+21

2

, (39)

give the energy ratios of the reflected and transmitted waves to the incoming wave. Rf

approaches (1+ v)/(1− v) and T decreases, as d increases. Two types of forces are
associated with energy transfer at the damped constraint. The ratio of energy dissipated
by damping to the incident energy is represented by

a=1− rr*− tt*=
4d

(d+2)2. (40)

The string tension and centrifugal force are responsible for the second energy flux at the

Figure 5. Energy coefficients at a spring-mass constraint (k=10 and m=0·1): (a) total energy coefficients,
(b) reflection and transmission coefficients, (c) energy flux coefficients.
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Figure 6. Energy coefficients at a damped constraint when v=0·5: (a) total energy coefficients, (b) energy flux
coefficients, (c) reflection and transmission coefficients.

constraint, as shown in section 3.2. The energy transfer divided by the incident energy is
quantified by the energy flux coefficient

Ff =
2vd2

(1− v)(d+2)2. (41)

For the forward wave, the two energy fluxes have opposite signs. The critical value of the
damping coefficient, where the total energy transfer becomes zero (Ff = a), is

dc =
2(1− v)

v
. (42)

It is noted that, for dq dc , the incident wave energy increases after interacting with the
damped constraint (Ef q 1). The destabilizing effect of dissipation is analogous to a similar
phenomenon observed in pipes conveying fluid [3, 24].

For a backward traveling wave, the energy flux coefficient Fb =−Ff is always negative.
Energy flux by the tension and centrifugal force is opposite to the case of the forward wave.
Both energy fluxes (Fb and a) contribute to energy decrease. Therefore, the total energy
coefficient, Eb =1− a+Fb , is always less than unity. The energy bounds and the energy
flux coefficients for the various constraint conditions are summarized in Table 1.

4.4.2. Optimal damping
Two optimal values of damping are considered here. One is determined by minimizing

the total wave energy (E). The optimal damping coefficients, minimizing the energy
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Figure 7. The absorption coefficient a at a damping support when v=0·5. The optimal damping coefficient
for maximal energy dissipation is d=2.

coefficients Ef and Eb at the damped constraint, become

df =
2(1− v)
1+ v

, db =
2(1+ v)
1− v

. (43)

With these values, Ef =(1+ v)/2 and Eb =(1− v)/2. The bounds of the energy coefficients
are in Table 1.

The second optimal damping coefficient is obtained by maximizing energy dissipation
by the damping element. When dopt =2, the energy absorption coefficient has the largest
value (a=0·5). It is concluded that energy dissipated by damping cannot exceed 50% of
the incoming wave energy, because both reflection and transmission coefficient cannot
vanish simultaneously (0·5E rr*+ tt*E 1). Since the dimensional value of dopt is
D=(Pr)1/2d=2Z, the optimal value equals twice the impedance of the string at v=0.
For the case of damping attached at a boundary of the translating string, the optimal value
of damping equals the impedance of the string. Further, the optimal boundary damping
can dissipate all the incident energy [25].

The energy coefficients at the damped constraint are plotted in Figure 6 when v=0·5.
The total energy of a forward incident wave increases (Ef q 1) for dq dc =2, where Ff

exceeds a and Ef is minimized at d= df =2/3. For a backward wave, Fb is negative and
Eb is minimum at d= db =6. The energy coefficients are within the bounds: 1EEf E 3 and
0·5EEb E 1. Both Rf and Ff increase as d increases. The associated absorption coefficients

Figure 8. Traveling waves in two translating subsystems coupled to a stationary constraint.
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are shown in Figure 7. The energy dissipated by the damping element is shown to be
maximized at dopt =2 and its magnitude is one half of the incident energy.

5. FREE VIBRATION ANALYSIS BY TRAVELING WAVES

The natural modes of vibration (standing waves) of any continuous system consist of
the superposition of equal but opposite traveling waves. In this part, the natural
frequencies of a translating string are determined by the traveling wave method.

5.1.      

In a translating string, the total phase change is gd , as a wave propagates from the
upstream boundary to the downstream one. The phase of an upstream wave changes by
gu over the length of the string. The total phase change, as the wave travels downstream
and upstream, becomes

gd + gu +fd +fu , (44)

where fd and fu are phase differences at the downstream and upstream ends. From the
phase-closure principle [26, 27], if the total phase change is an integer multiple of 2p, the
condition describes a natural frequency of the system. For an unconstrained translating
string with fixed supports, the total phase differences satisfying the principle,

v0 1
1+ v

+
1

1− v1+ p+ p=2pn, (45)

give the natural frequencies of the classical moving threadline,

vn = np(1− v2), (46)

where n=1, 2, 3, · · · .

5.2.       

If a constraint is coupled to the translating string at x= xc , the string-constraint system
is modelled by two coupled strings with lengths xc and 1−xc , as shown in Figure 8. The
natural frequency of the constrained string is determined by traveling waves in keeping
with reference [28] for two coupled non-translating subsystems. The free vibration of a
particular natural frequency v is expressed in terms of four traveling waves as

wA (x, t)=Ad ei(vt− gdx) +Au ei(vt+ gux), wB (x, t)=Bd ei(vt− gdx) +Bu ei(vt+ gux). (47)

These wave equations must satisfy appropriate scattering conditions to represent a natural
frequency of the two coupled strings. At the coupling point x=0, the following conditions
are satisfied:

Bd = tAd + rBu , Au = tBu + rAd , (48)

where t and r are the transmission and reflection coefficients at the constraint. Without
any external source of energy in the constraint, the coefficients satisfy equations (11) and
(12). The reflection conditions at the downstream and upstream fixed boundaries are

rd =
Bu eigu (1− xc )

Bd e−igd (1− xc )
=−1, ru =

Ad eiguxc

Au e−igdxc
=−1. (49)
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Equations (48) and (49) yield

01− rmd

− tmd

−tmu

1− rmu10Bd

Au1=0001, (50)

where mu = ru e−ixc (gd + gu ) = ei{p− xc (gd + gu )} and md = rd e−i(1− xc )(gd + gu ) = ei{p−(1− xc )(gd + gu )}. The
non-trivial solution for Bd and Au requires

(1− rmd )(1− rmu )− t2mumd =0. (51)

For the case of the non-dissipative constraint (d=0), equation (51) is expressed in the
simpler form

cos
cu +cd

2
= =r= cos

cu −cd

2
, (52)

where

cu = p+fr − xc (gd + gu ), cd = p+fr −(1− xc )(gd + gu ). (53)

With gd + gu =2v/(1− v2), equation (52) gives the natural frequencies of the string
coupled to the undamped constraint.

Using equation (52), eigenfrequency loci are plotted in Figure 9, as v varies from zero
to the critical speed. Here the spring-mass constraint is located at x=0·5 and the

Figure 10. Dependence of localization =d= on frequency: (a) a spring constraint is located at x=0·5; (b) at
x=0·55. Natural frequencies of the first eight modes are marked: o, k=0; +, k=3; (, k=30.
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magnitude and phase angle of the reflection coefficient at the constraint are

=r== k−mv2

{(k−mv2)2 +4v2}1/2, fr =−arctan 0 2v

k−mv21. (54)

The dashed lines represent the frequencies of an unconstrained string (k=m=0). The
natural frequencies of the even numbered modes are unchanged for all the cases, because
they vanish at the coupling point. The natural frequencies of the odd numbered modes
increase with spring stiffness (Figure 9(a)) and decrease with mass (Figure 9(b)). For two
cases of a spring-mass constraint satisfying vc =zk/m=10, natural frequency loci are
shown in Figures 9(c) and (d). The odd numbered frequencies increase below vc , and
decrease above vc . The frequency loci always cross those of an unconstrained string at
v=vc . By an eigenvalue inclusion principle for distributed gyroscopic systems [29], the
natural frequencies vn of the string coupled to the mass-spring constraint at any point
(0E xc E 1) satisfy

vu
r Evn Evu

n+1 if vn Qvc , vn Evu
n Evn+1 if vn qvc , (55)

where n=1, 2, 3, · · · and vu
n are natural frequencies of an unconstrained string. The

variation in the natural frequencies caused by adding a constraint is also studied in the
literature [10].

6. MODE LOCALIZATION

6.1.  

Structural irregularities in a symmetric continuum, depending on the magnitude of
disorder and the strength of coupling, may localize the vibration modes and confine
vibrating energy to a certain region. In a translating string subjected to a stationary
constraint, the constraint location xc may cause asymmetry (disorder) of the system.
The vibration localized into downstream and upstream segments of the translating
string is quantified by the localization factor [28]. From equations (50) and (51), the
ratio of vibrations in the two subsystems is expressed by

d=XBdBu

AdAu
=XB2

dmd

A2
umu

=
1− rmu

tzmdmu

. (56)

This ratio is real when evaluated at a natural frequency. Using rmu = =r= eicu and
=t=2 =1− =r=2, the ratio (56) takes the simpler form

=d== =1− rmu =
=t= =X1+ =r=2 −2=r= cos cu

1− =r=2 . (57)

The vibration ratio =d= gives the degree of localization of the two subsystems coupled
by the undamped constraint (d=0). When evaluated at a particular natural frequency,
it determines the degree of localization of the corresponding natural mode. When
=r==0, the localization factor is always unity and the vibration modes are equally
distributed.
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Figure 11. Localization of the first two vibration modes by a spring constraint: (a) unconstrained case, k=0;
(b) spring with k=30 located at xc =0·5; (c) spring with k=30 located at xc =0·55. The solid and dashed curves
are real and imaginary parts of the modes, respectively.

6.2.      

From equation (57), the localization factor d has the bounds

X1− =r=
1+ =r=E =d=EX1+ =r=

1− =r=. (58)

It is noted that the upper and lower bounds of the degree of localization are determined
in terms of the reflection coefficient r at the coupling point. The sensitivity of the
localization factor to the constraint location is also obtained as

S=
d=d=
dxc

=
=r= sin cu (gd + gu )

(1+ =r=2 −2=r= cos cu )1/2(1− =r=2)1/2. (59)

The sensitivity S of the mode localization actually quantifies the strength of curve veering
of eigenfrequency loci.

6.3.     

With the magnitude and phase angle of the reflection coefficient at a spring constraint,

=r== k
(k2 +4v2)1/2, fr =−arctan

2v

k
, (60)

the localization factor =d= is plotted as a function of frequency when k=0, 10 and 30 in
Figure 10. The first six natural frequencies are calculated from equation (52) and marked
(o, + and ( ). The amplitudes of the oscillatory curves decrease with frequency. The effect
of the constraint on the mode localization is strong at low frequency and large spring
stiffness. When the elastic constraint is located at x=0·5 (Figure 10(a)), natural
frequencies of the even modes remain unaltered. The odd numbered frequencies increase
and approach the even numbered ones as k increases. As k:a, the system develops
repeated natural frequencies at the even numbered frequencies. In all the cases,
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the localization factor =d= remains unity because the constraint is symmetric. If the string
has a structural irregularity by locating the constraint at xc =0·55, the system shows
localization of natural modes. Figure 10(b) shows that the odd numbered modes are
localized in the upstream subsystem, and the even modes are confined in the downstream
one. The effect of the disorder on the mode shapes increases with k and decreases with
frequency. The first and second modes of free response are shown in Figure 11 for three
different cases. Both real and imaginary parts of the complex eigenfunctions are localized
for the case of xc =0·55 (Figure 11(c)). Small changes in the constraint location may
produce large changes in the modal response of the translating string.

The degrees of localization of the first three modes and the frequency spectrum as a
function of constraint location xc are plotted in Figures 12(a) and (b). Here, spring stiffness
is k=30 and v=0·5. In Figure 12(b), dashed lines are at the limiting case k:a with
natural frequencies

vm =
mp(1− v2)

xc
, vn =

np(1− v2)
1− xc

, (61)

where m, n=1, 2, 3, · · · . Veering of two frequency loci occurs around the regions where
frequency loci (dashed lines) of the decoupled system cross (i.e., repeated frequencies).
Further, the localization factors of the vibration modes cross the line of =d==1 at the curve
veering regions. An important characteristic of curve veering is that the eigenfunctions are
interchanged during veering in a rapid but continuous way [20]. The vibration modes
associated with curve veering are highly localized in either the downstream or upstream
segment. The strength of curve veering is quantified by the sensitivity S in equation (59)
in terms of the magnitude of disorder xc and the coupling factor k. The degree of
localization weakens for higher frequency modes. Both the reflection coefficient r and the
upper bound of =d= in equation (58) decrease with increasing frequency. The free response

Figure 12. Mode localization and natural frequency loci of an elastically constrained string as a function of
the constraint location when k=30 and v=0·5: (a) localization factor =d= of the first three modes: ——————, mode
1; – – –, mode 2; ——, mode 3; (b) frequency loci: ——, k=30; – – –, k:a.
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Figure 13. Dependence of localization factor =d= on frequency: (a) an inertia constraint located at x=0·5; (b)
at x=0·51. Natural frequencies of the first eight modes are marked: o, m=0; +, m=0·1; (, m=0·3.

of the system is sensitive to small irregularity in constraint location around the regions with
curve veering.

6.4.     

The localization factor =d= is plotted for the cases of m=0, 0·1 and 0·3 in Figure 13.
The first six vibration modes are marked (o, + and ( ). When the mass constraint is
located at x=0·5 (Figure 13(a)), the natural frequencies of the even modes remained
unaltered. The odd numbered frequencies decrease and approach the even numbered ones,

Figure 14. Mode localization and frequency loci by location of a point mass constraint of m=0·1 and v=0·5:
(a) localization factor =d= of the first four modes: ——————, mode 1; – – –, mode 2; ——, mode 3; ––– ––– –––, mode 4; (b)
frequency loci: ——, m=0·1; – – –, m:a.
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as m increases, and the degree of localization of each mode is unity. With braking
of symmetry (xc =0·51), the vibration modes are localized in either downstream or
upstream segments and the localization factor increases with frequency and the
constraint mass. The localization factors and frequency loci of the first four
modes are plotted in Figures 14(a) and (b). Unlike the case of a spring constraint,
the mode localization and veering of frequency loci by the mass constraint are strong
for high frequency modes. From equation (36), high frequency modes (r : −1 and
t : 0) are localized strongly for small structural irregularities caused by the constraint
location. =d= becomes unbounded as v goes to infinity (0E =d=Ea).

6.5.     

When a translating string is in contact with damping, the coupled string has complex
eigenvalues (l= n+ iv). The derivative of the nth eigenvalue ln with respect to the
damping coefficient [10],

1ln

1d
=−(1− v2) sin2 (npxc ), (62)

is negative real. Therefore, free vibration is stabilized by the damped constraint.
The complex natural frequencies and mode localization of the damped string are
not obtained from equations (52) and (57), because the equations are valid for
the undamped case (d=0). The effect of the damped constraint on the mode
localization of the constrained string is not reported in the literature. The interesting topic
will be further studied by the authors using the traveling wave technique described in this
paper.

7. CONCLUSIONS

The energetics and mode localization of free vibration in a translating string coupled
to a constraint of a spring-mass-damper system are studied. The main findings of this paper
are summarized as follows.

First, the string tension and the non-conservative centrifugal force at the constraint
work on the traveling string. The resultant energy flux at the coupling point is quantified
by the energy flux coefficient. Energy transferred into the string over a cycle is always
positive for a forward wave and is always negative for a backward one.

Second, a traveling wave of high frequency transmits through an elastic constraint and
one of low frequency reflects from the constraint. The wave transmission and reflection
at a point mass constraint are opposite to the case of the elastic constraint. For a
spring-mass constraint, the incident wave completely transmits when the natural frequency
of the oscillator (zk/m) equals the incident wave frequency.

Third, wave scattering characteristics at a damped constraint is independent of wave
frequency. The energy dissipated by damping is quantified by the absorption coefficient
and the maximum energy dissipation is 50% of the incoming wave energy. The
corresponding damping coefficient is twice the impedance of the string; d=2Z.

Finally, structural asymmetry, produced by attaching the constraint, localizes vibration
modes of the translating string. The degree of vibration localized into a downstream or
upstream segment depends on the reflection coefficient and location of the constraint.
Under a spring constraint, low frequency modes are strongly localized. The degree of
localization by a point mass constraint increases with increasing frequency.
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